219 research outputs found

    Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery

    Get PDF
    In this study, a dual loop ORC (organic Rankine cycle) system is adopted to recover exhaust energy, waste heat from the coolant system, and intercooler heat rejection of a six-cylinder CNG (compressed natural gas) engine. The thermodynamic, heat transfer, and optimization models for the dual loop ORC system are established. On the basis of the waste heat characteristics of the CNG engine over the whole operating range, a GA (genetic algorithm) is used to solve the Pareto solution for the thermodynamic and heat transfer performances to maximize net power output and minimize heat transfer area. Combined with optimization results, the optimal parameter regions of the dual loop ORC system are determined under various operating conditions. Then, the variation in the heat transfer area with the operating conditions of the CNG engine is analyzed. The results show that the optimal evaporation pressure and superheat degree of the HT (high temperature) cycle are mainly influenced by the operating conditions of the CNG engine. The optimal evaporation pressure and superheat degree of the HT cycle over the whole operating range are within 2.5–2.9 MPa and 0.43–12.35 K, respectively. The optimal condensation temperature of the HT cycle, evaporation and condensation temperatures of the LT (low temperature) cycle, and exhaust temperature at the outlet of evaporator 1 are kept nearly constant under various operating conditions of the CNG engine. The thermal efficiency of the dual loop ORC system is within the range of 8.79%–10.17%. The dual loop ORC system achieves the maximum net power output of 23.62 kW under the engine rated condition. In addition, the operating conditions of the CNG engine and the operating parameters of the dual loop ORC system significantly influence the heat transfer areas for each heat exchanger

    Optimal capacity reliability design of networks based on genetic algorithm

    Get PDF
    The cost, capacity and reliability of components vary in different component types, and the optimal component combination is determined by minimizing the total cost under the constraint of network capacity reliability requirement. To solve the problem that the gradient method can only be applied for networks whose capacity and reliability of components monotonically increase with the cost, a general optimization model is presented, and a Genetic Algorithm (GA) method using the minimal path sets to calculate the network capacity reliability is proposed to solve this optimal capacity reliability design problem. The optimal types of both nodes and links can be obtained using our optimization method. Our case study on ARPA network shows that our algorithm is efficient for the problem with good convergence and search performance

    Rate-Splitting and Sum-DoF for the KK-User MISO Broadcast Channel with Mixed CSIT and Order-(K1)(K-1) Messages

    Full text link
    In this paper, we propose a rate-splitting design and characterize the sum-degrees-of-freedom (DoF) for the KK-user multiple-input-single-output (MISO) broadcast channel with mixed channel state information at the transmitter (CSIT) and order-(K1)(K-1) messages, where mixed CSIT refers to the delayed and imperfect-current CSIT, and order-(K1)(K-1) message refers to the message desired by K1K-1 users simultaneously. In particular, for the sum-DoF lower bound, we propose a rate-splitting scheme embedding with retrospective interference alignment. In addition, we propose a matching sum-DoF upper bound via genie signalings and extremal inequality. Opposed to existing works for K=2K=2, our results show that the sum-DoF is saturated with CSIT quality when CSIT quality thresholds are satisfied for K>2K>2.Comment: This work has been accepted by VTC2023-Fal

    Research Progress of Superhydrophobic Materials in the Field of Anti-/De-Icing and Their Preparation: A Review

    Get PDF
    Accumulated ice has brought much damage to engineering and people’s lives. The accumulation of ice can affect the flight safety of aircraft and lead to the failure of cables and power generation blades; it can even cause damage to human life. Traditional anti-icing and de-icing strategies have many disadvantages such as high energy consumption, low efficiency, or pollution of the environment. Therefore, inspired by animal communities, researchers have developed new passive anti-icing materials such as superhydrophobic material. In this paper, the solid surface wetting phenomenon and superhydrophobic anti-icing and de-icing mechanism were introduced. The methods of fabrication of superhydrophobic surfaces were summarized. The research progress of wear-resistant superhydrophobic coatings, self-healing/self-repairing superhydrophobic coatings, photothermal superhydrophobic coatings, and electrothermal superhydrophobic coatings in the field of anti-icing and de-icing was reviewed. The current problems and challenges were analyzed, and the development trend of superhydrophobic materials was also prospected in the field of anti-icing and de-icing. The practicality of current superhydrophobic materials should continue to be explored in depth

    Analysis on the Tendon Spacing of Prestressed Tunnel Liner

    Get PDF
    In this paper, based on cylindrical shell theory of elastic mechanics, the mechanical property of prestressed concrete lining structure was studied; models of calculating infinitely-long structure and semi-infinitely-long structure were established; theoretical formulas of normal displacement and inner force on the middle surface were deduced; the maximum influence scope of stress was determined and the superposition formula of maximum cable spacing was deduced. Combing observed data in practical project, the theoretical result and measured result of circumferential stress in prestressed concrete lining structure was compared. Results reveal that the theoretical result coincides with the measured value and that the method determining maximum cable spacing can be applied into practical projects. The even distribution of circumferential stress in the axial direction caused by the tensile force of anchor cable is not a factor determining the cable spacing

    Energy Efficiency Oriented Design Method of Power Management Strategy for Range-Extended Electric Vehicles

    Get PDF
    The energy efficiency of the range-extended electric bus (REEB) developed by Tsinghua University must be improved; currently, the energy management strategy is a charge-deplete-charge-sustain (CDCS) strategy, which exhibits low energy efficiency on the demonstration model. To improve the energy efficiency and reduce the operating cost, a rule-based control strategy derived from the dynamic programming (DP) strategy is obtained for the Chinese urban bus driving cycle (CUBDC). This rule is extracted by the power-split-ratio (PSR) from the simulation results of the dynamic powertrain model using the DP strategy. By establishing the REEB dynamic models in Matlab/Simulink, the control rule can be achieved, and the power characteristic of powertrain, energy efficiency, operating cost, and computing time are analyzed. The simulation results show that the performance of the rule-based strategy presented in this paper is similar to that of the DP strategy. The energy efficiency can be improved greatly compared with that of the CDCS strategy, and the operating cost can also be reduced
    corecore